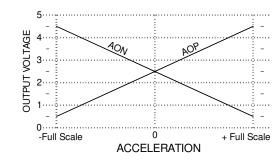
- Hermetically Sealed Titanium Case
- Detachable Cable (sold separately)
- Capacitive Micromachined
- Nitrogen Damped
- ±4V Differential Output or 0.5V to 4.5V Single Ended Output
- Fully Calibrated
- Low Power Consumption
- -55 to +125°C Operation
- +9 to +32V DC Power
- Simple Four Wire Connection
- Low Impedance Outputs Will Drive Up To 50 Feet of Cable
- Responds to DC and AC Acceleration
- Non Standard g Ranges Available
- Low Noise
- Serialized for Traceability

Available Cables

Available G-Ranges

Cable	Cable	Full Scale	Model		
Length	Model Number	Acceleration	Number		
4 ft	2240-CAB-04	± 2 g	2240-002		
14 ft	2240-CAB-14	± 5 g	2240-005		
33 ft	2240-CAB-33	± 10 g	2240-010		
50 ft	2240-CAB-50	± 25 g	2240-025		
		± 50 g	2240-050		
		±100 g	2240-100		
		±200 g	2240-200		
		±400 g	2240-400		

DESCRIPTION

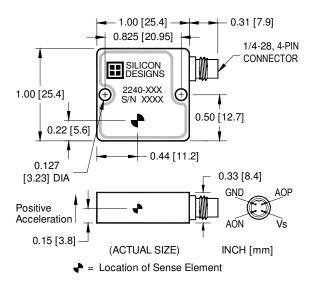

The model 2240 accelerometer is a hermetically sealed version of the model 2220. This rugged module combines an integrated SDI low noise accelerometer with high drive, low impedance buffering for measuring acceleration in commercial/industrial environments. It is tailored for zero to medium frequency instrumentation applications. The titanium case is sealed using a laser welding process and is easily mounted via two #4 (or M3) screws. On-board regulation is provided to minimize the effects of supply voltage variation. It is relatively insensitive to temperature changes and gradients. A model 2240-CAB cable, sold separately (see order information above), connects via a miniature 4-pin screw-on connector. The cable's shield is electrically connected to the titanium case while the ground (GND) wire is isolated from the case. An initial calibration sheet (2240-CAL) is included and periodic calibration checking is available.

OPERATION

The Model 2240 accelerometer module produces two analog voltage outputs, which vary with acceleration as shown in the graph on the next page. The sensitive axis is perpendicular to the bottom of the package, with positive acceleration defined as a force pushing on the bottom of the package. The signal outputs are fully differential about a common mode voltage of approximately 2.5 volts. The output scale factor is independent from the supply voltage of +9 to +32 volts. At zero acceleration the output differential voltage is nominally 0 volts DC; at "full scale acceleration the output differential voltage is "4 volts DC respectively. nominally 0 volts DC; at "full scale acceleration the output differential voltage is "4 volts DC respectively.

APPLICATIONS

- Flight Tests
- Vibration Monitoring
- Vibration Analysis
- Machine Control
- Modal Analysis
- Robotics
- Crash Testing
- Instrumentation


SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

SIGNAL DESCRIPTIONS

Vs and GND (Power): Red and Black wires respectively for the 2240-CAB cable (ordered separately). Power (+9 to +32 Volts DC) and ground.

AOP and AON (Output): Green and Yellow wires respectively for the 2240-CAB cable (ordered separately). Analog output voltages proportional to acceleration; AOP voltage increases (AON decreases) with positive acceleration. At zero acceleration both outputs are nominally equal to 2.5 volts. The device experiences positive (+1g) acceleration with its lid facing up in the Earth's gravitational field. Either output can be used individually or the two outputs can be used differentially. (See output response plot below)

PERFORMANCE - By Model: V _S = +9 to +32VDC, T _C =25°C								
MODEL NUMBER	2240-002	2240-005	2240-010	2240-025	2240-050	2240-100	2240-200	UNITS
Input Range	±2	±5	±10	±25	±50	±100	±200	g
Frequency Response (Nominal, 3 dB) 1	0 - 400	0 - 600	0 - 1000	0 - 1500	0 - 2000	0 - 2500	0 - 3000	Hz
Sensitivity, Differential ²	2000	800	400	160	80	40	20	mV/g
Output Noise, Differential (RMS, typical)	8	9	10	25	50	100	200	μg/(root Hz)
Max. Mechanical Shock (0.1 ms)					g			

PERFORMANCE - All Models: Unless otherwise specified, V _s = +9 to +32VDC, T _C =25°C, Differential Mode.								
PARAMETER	MIN	TYP	MAX	UNITS				
Cross Axis Sensitivity			1	2	%			
Bias Calibration Error	-002			4.0	% of span			
Bids Calibration Error	-005 thru -200			1.5	% of span			
Dias Tamparatura Chift (T = 40 to 190°C)	-002		100	200	(nam of casa) /°C			
Bias Temperature Shift (T _C = -40 to +80°C)	-005 thru -200		50	100	(ppm of span)/°C			
Scale Factor Calibration Error ³			1	2	%			
Scale Factor Temperature Shift	-002 thru -010	-250		.150	no m 196			
(T _C = -40 to +80°C)	-025 thru -200	-150		+150	ppm/°C			
	-002 thru -050		0.15	0.5				
Non-Linearity (-90 to +90% of Full Scale) 3,4	-100		0.25	1.0	% of span			
	-200		0.40	1.5				
Power Supply Rejection Ratio			>65		dB			
Output Impedance			1		Ω			
Output Common Mode Voltage			2.45		VDC			
Operating Voltage				32	VDC			
Operating Current (AOP & AON open)			12	14	mA DC			
Mass (not including cable)			10		grams			
Cable Mass			25		grams/meter			

Note 1: 250Hz "100Hz, -3dB bandwidth, optionally available. Note 2: Single ended sensitivity is half of values shown.

Note 3: 100g versions and above are tested from -65g to +65g. Note 4: Tighter tolerances may be available on special order.

CABLE SPECIFICATIONS & LENGTH CONSIDERATIONS

The case connector pins and cable connector sockets are gold plated beryllium-copper. The cable connector shells are gold plated brass. The cable consists of four 30 AWG (7x38) silver plated copper wires with PTFE insulation surrounded by a braided shield. The black FEP shield jacket has a nominal outer diameter of 0.100". Cable lengths of

up to 50 feet (15 meters) can be used without the need to test for output instability. For lengths longer than 50 feet, we recommend you check each individual installation for oscillation by tapping the accelerometer and watching the differential output for oscillation in the 20kHz to 50kHz region. If no oscillation is present then the cable length being used is OK. From the standpoint of output current drive and slew rate limitations, the model 2240 is capable of driving over 2000 feet (600 meters) of its cable type but at some length between 50 and 2000 feet, each device will likely begin to exhibit oscillation.

DIFFERENTIAL vs. SINGLE ENDED OPERATION

The model 2240 accelerometer will provide its best performance when you connect it to your instrumentation in a differential configuration using both the **AOP** and **AON** output signals. But a differential connection may not always be possible. In such cases, it is perfectly fine to connect the accelerometer to your instrumentation in single ended mode by connecting **AOP** and **GND** to your instrumentation and leaving **AON** disconnected. Keep in mind however, that for a single-ended connection, the signal to noise ratio is reduced by half, the signal is more susceptible to external noise pickup, and the accelerometer's output will vary directly with any change in the +2.5V reference that you provide.